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Abstract 

A discrete subquantum classical dynamics is used to show that the conventional definition 
of quantum probability can be regarded as being 'reducible'. In terms of this basis, a 
solution is suggested to a difficulty which is encountered in the phase space theory of 
quantum processes and it is also indicated how a strictly measure theoretical approach 
to quantum path weighting could be achieved. 

1. Introduction 

The work described in this paper is closely related to work by Wigner 
(1932), Moyal (1949), Bartlett (1949) and Gilson (1968b). The first part  of  
this paper contains a very simple derivation of a quantum mechanical 
structure from a slightly generalized classical point of  view. The formalism 
used in the first four references given above may arise from this basis. This 
basis is then used to uncover some interesting structure at the 'phase 
sp~ace ' subquantum level. 

2. Discrete Dynamics 

The generalization of  classical dynamics to be employed here involves 
simply the replacement of  derivatives in the Hamiltonian equations of  
motion, for a certain class of  subsystems, by the corresponding ratios of 
differences. The phase space description of the assembly of subsystems is 
then discussed. Each subsystem is characterized by a definite value for its 
'coordinate difference'. All the subsystems will be taken to have the same 
form of  classical Hamiltonian, 

pZ 
H = 2 7  ~ + W(q) (2.1) 

but each subsystem is assumed to have its own discrete dynamics determined 
by its own value for the "coordinate difference' which will be denoted by Aq. 
Thus Aq is not necessarily small and the total assembly will be composed 
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of all subsystems with values of Aq lying between -~o and +oo. Thus 
each subsystem will have its own 'discrete' Hamiltonian equations of 
motion, 

and 

(2.2) 

p OH 
m Op (2.2a) 

AH 1 

The incremental equations have been taken at q i (Aq/2) in order to main- 
tain maximum symmetry, simplicity, and analogy with the derivative at a 
point q. From equation (2.2a) it can be seen why it is not necessary to discuss 
the increment Ap in any detail. This is because the kinetic energy term in 
(2.1) has been taken to have the usual classical quadratic form with the 
consequence that the incremental equation (2.2) coincides with the 
differential equation (2.2a). It can also be seen that the same would be true 
for Aq, if the potential energy term were constant, linear or quadratic in q. 

3. Subsystem Phase Space 

Each subsystem will be taken to have its own equation of continuity 
derived from the phase space velocity fields (2.2) and (2.3) and expressed 
against the usual continuous geometry background. Thus for the sub- 
system associated with the fixed number Aq there will be the phase space 
equation of continuity 

Oof t - ~ (P f )+~- -p ( .W(q+?)A;W(q- -~ ) f  ) (3.1) 

wheref(p,q, Aq) will be taken to be a phase space density distribution in p 
and q per unit range of subsystem parameter Aq. The form of equation (3.1) 
immediately suggests trying a solution of the form 

f(p, q, t, Aq) = P(q, Aq/2, t) exp (-iApAq) (3.2) 

where A is a suitably dimensioned constant to be determined. Now (3.2) 
may well be complex, but it is clear that if one would prefer to work only with 
real solutions to (3.1) one could take the real parts of both (3.1) and (3.2) 
assuming of course, that W(q) is real. It simplifies the mathematics to work 
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with (3.2) as it stands and so this is what will be done here. Thus substituting 
(3.2) into (3.1), gives the equation 

OF 10I'Oexp(-iApAq) . ,[ .  [ 

for /~ in the case of subsystem Aq. 

4. Total Phase Space Distribution 

The total phase space distribution, F(p,q, t) for the whole assembly will 
be given, after integration over all subsystems, Aq, by 

+co 

F(p, q, t) = ~ f(p, q, Aq) d(Aq) (4.1) 
--oo 

Thus if equation (3.3) is integrated with respect to Aq from -co to +~ ,  the 
integro-differential equation satisfied by F can be obtained from (3.2), 
(3.3) and (4.1). The required equation is 

OF i ( 1 0 2 ff 
Ot - +-m j ( ~ )  O q ~  exp(-iApAq)d(Aq)- 

--oo 

+co  

-A2~ / f ( W ( q + ~ ) - W ( q - ~ ) ) e x p ( - i h p A q ) F d ( A q )  (4.2) 
woo 

In arriving at (4.2) there has been an integration by parts with respect to 
Aq in the first term on the right-hand side and the assumptions that 
Ol-'/Oq = 0 at Aq = •  have been introduced. The Fourier transform of 
(4.2) with respect to p is 

OF(q, ~ 
/ 

5. Schr6dinger' s Equation 

Equation (4.3) is separable in the variables X=q + (~/2h) and Y =  
q - (~/2A). Thus, on transforming to these variables, putting 

F(q, ~/~, t) = A(X, t)B ( Y, t) (5.1) 
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and introducing the separation constant C, the two equations 

+iaA 1 a2A 
~-  -F 2Am OX z A ( W ( X ) - C ) A = O  

and 

(5.2a) 

. OB 1 OZ B 
- t ~ + 2Am 0 y2 ,~(W(Y) - C)B = 0 (5.2b) 

are obtained. 
From (3.2), (4.1) and (5.1), the total phase space distribution is given by 

+co 1 (q+~, 
--co 

From (5.3) the probability distribution, o(q,t), in configuration space is 
obtained by integration over p. Thus 

+co 

p(q, t) = f F(p,q, t)dp = A(q, t)B(q, t) (5.4) 
- c o  

and a simple prescription for keeping p real is to take 

B(q, t) = A*(q, t) (5.5) 

Equation (5.5) is clearly consistent with (5.2a), being the SchrSdinger 
equation for A(q, t), with (5.2b) being its complex conjugate if h has the 
value (I/h). The connection of this work with the earlier mentioned refer- 
ences is now clear from expression (5.3) for F(p,q, t) after (5.4) has been used 
and from the fact that A is to be a solution to the SchrSdinger equation 
(5.2a). [In particular, see Bartlett (1949), expression (1.1).] If  instead of 
making the above steps, (3.2) is substituted into (3.1) and then the factor 
exp (-ipAq/h) is divided out, the result is the differential equation 

ae  a {pr  i 
- O q \ m ] - ~ [ W ( q + h ~ / 2 ) -  W(q-h~/2)]F (5.6) Ot 

Thus if it is agreed to work exclusively with solutions of the form (3.2), 
equations (3.1) and (5.6) can be regarded as equivalent. The form (5.6) 
turns out to be rather useful in some situations. 

6. Probabilistic Interpretation 

The first question which arises is whether or not solutions of the form 
(3.2) can have a probabilistic interpretation. 

The real and imaginary parts of (3.2) are 

f,(p,q, Aq)= Fl ( q , ? , t ) c o s ~  + F 2 ( q , ~ , t ) s i n  ~ (6.1) 
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and 

A(p,q, = - / ' 1   q,5, sin q, , t cos  (6.2)  

respectively, where 

/ ,  = / ' x  + i/'2 

The properties and possible interpretations offz will not be considered in 
this paper. For a realistic, probabilistic interpretation of (6.2), it is necessary 
that either (6.2) be non-negative everywhere or it is agreed to work in 
regions where such is the case. Since there are regions wheref~ is negative, 
the point of view will be adopted that (6.2) can only represent a probability 
wheref~ ~> 0. Consider a region, R(t), wheref~ ~> 0. The region R(t) will, as 
has been indicated, change with time. Therefore, unless a rather special 
situation happens to apply there will be a loss or gain of probability fluid 
out of or into R(t). The special situation which would avoid this complica- 
tion would be for the flow of probability fluid, on the boundary of R, 
always to be along and parallel with the boundary. It will now be shown 
that this is, indeed, the case when the boundary of R(t) is composed of the 
curves f l  = O. 

7. Boundary Flow 

Consider a region, R(t), where f l  >~ 0 which is bounded by curves in 
(p,q) space along whichfl = 0. From (6.2) it can be seen that such boundary 
curves are given by 

h tan- '  (/,l(q, Aq/2, t)~ 
P -  Aq \ F z ( q , ~ ]  (7.1) 

Thus for the fixed subsystem, Aq = constant, 

dp h 1 / dFl ~ d/,z\ 
dt - dq'(/,l)z + (/ ,z)Z'[FZ~dt- l ' ~ - ~ )  (7.2) 

and because/I does not depend explicitly onp,  

d/, OF p OF 
+ (7.3) dt Ot m Oq 

Equations (5.6) and (7.3) can be used to derive 

d / ,  i 

If  the real and imaginary parts of (7.4) are multiplied by /'2 and /,1 
respectively, the following equation can be formed 

F2d/,~ - d / , 2  1 F / 
~ - 1 ' ,  ~ 7 - = h [ W t q + ~ ) - W ( q - ~ ) ] ( / , , 2 +  /'22) (7.5) 
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This can now be used in (7.2) to give 

dt Aq (7.6) 

Equation (7.6) is the discrete equation of motion (2.3) for the subsystem 
with coordinate difference Aq. From this, it can be concluded that the 
boundary path of R(t) given by (7.1) is a curve of phase space density flow 
for this subsystem. It is therefore possible to separate the phase space for 
this subsystem into two independent parts with respect to the density 
functionfx(p,q, Aq, t). The actual motions of these parts are not independent 
as far as overall movement with time is concerned since they have common 
moving boundaries. However, with each part there will correspond the 
conservation of a fluid in phase space because equation (3.1) is satisfied 
everywhere. Wheref~ is positive, the fluid can be taken to be a probability 
which can be denoted by gl,4-. 

g~,+=+f~(p,q, Aq, t), f l  > 0  (7.7) 
81,+ = 0, f i  < 0  

Further, it is also possible to work with the complementary fluid and 
define a corresponding probability, g~._. 

g1,- = -f1(P, q, Aq, t), ./'1 < 0 (7.8) 
gx,_= 0, f l > 0  

The same procedure can be adopted for all subsystems (-o0 < Aq < +o~) 
provided W is a differentiable function of q. These definitions give a more 
detailed understanding of the nature of the phase space flow of the sub- 
systems. Each subsystem is composed of two separately conserved fluids 
in phase space. These fluids will be referred to as the positive and negative 
fluids, and further physical interpretation will be reserved until later. 

8. The Assembly 

Consider how this two-fluid scheme for the subsystems affects the whole 
assembly. It is possible to define the two integrals 

4-oo 

= f g,,+(p,q, Aq, t)d(Aq) (8.1) G+(p,q, t) 

4-00 

G_(p, q, t) = f g~._(p, q, Aq, t) d(Aq) (8.2) 
- - o 3  

Then, in terms of the subsystem probabilities gl, + and g~._, there will be the 
two assembly (non-negative) probability distributions G+ and G_. G+ refers 
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to the totality of 'positive' fluid and G_ refers to the totality of 'negative' 
fluid, and 

+co 

G+- G_= .I- (g~'+ ~ g~ ~ ~ d ~ q ~  

--cO 

+o~ 

.( f l  d(Aq) = F(p,q,t)  (8.3) 
--co 

where (7.7) and (7.8) have been used. Thus the difference of the two functions, 
G+ and G_, gives the usual quantum phase space distribution, F(p,q, t), 
Moyal (1949). Equation (8.3) throws some light on a difficulty which has 
been encountered in the theory of 'quantum phase space'. This difficulty 
arises because the function F(p,q,t), in contrast with its physical and 
mathematical utility, has the undesirable attribute of not being everywhere 
positive. For example, 

F(p, q, t) = -G_  = - (a  probability) 

where G+ = 0. 
From the work in this paper, it seems possible that the reason for this 

difficulty lies in the blanket interpretation of F(p,q, t) as being a probability. 
In fact, the functions G+ and G_ would seem to be more suitably regarded 
as being phase space probabilities, because they are non-negative every- 
where. 

9. Configuration Probabilities 

The main link between the phase space theory and conventional quantum 
mechanics lies in formula (5.4) which connects the phase space distribution, 
F(p,q, t), with the conventional probability density, 

p(x, t) = ~*(x, t)~(x, t) (9.1) 

where ~b(x, t) is the usual Schr6dinger wave function. 
From (8.3) it can be seen that (5.4) involves a mixing of the two subphase 

space fluids G+ and G_ and thus, from the point of view of this analysis, 
the p(x, t) in (5.4) is a reducible function with respect to time evolution 
transformations. However, historically the definition (9.1) came first and 
the study of quantum phase space theory came later and also assumed the 
fundamental nature of (9.1). The fact that F(p, q, t) could be negative for 
some regions of (p,q) space has probably deterred any extensive study of 
quantum phase space theory. It can now be seen, though, that the blame for 
this apparently pathological property of F(p,q,t) could conceivably be 
more on the quantum side than on the phase space side, because this 
analysis shows p(x, t) to be reducible and consequently more fundamental 
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definitions of quantum probability are possible. From the phase space 
point of view, it is possible to use the functions gl,+ and gl,-, and the 
formulae (8.1) and (8.2) to define two real, positive configuration probability 
densities p+ and p_ by the formulae 

and 

q-co 

p+(q, t) = + f G+(p,q, t)dp (9.2) 
--00 

,4-00 

p_(q, t) = + f G_(p, q, t) dp (9.3) 

From equation (3.1) and the discussion of  the f l  = 0 boundaries, it can be 
inferred that 

agl,+- O(P ) a ( W ( q + ~ ) _ ~ q W ( q - ~ q - )  ) ( 9 . 4  ) 
. . . .  m gl'+- + g,.+_ 

If  now equation (9.4) is integrated with respect to p from -co to +oo, the 
following equations are obtained 

Aq (9.5) 

Two velocity fields, v• t), defined as follows 

1 
v• p• f f P gl,+_(p,q, Aq, t)dpd(Aq) (9.6) 

will also be needed. If  (9.5) is integrated with respect to (Aq) from -oo to 
+ ~  and formulae (9.2), (9.3), (8.1), (8.2) and (9.6) are used, it follows that 

Ot =-- (v+(q, t) p+(q,t)) (9.7) 

where the Riemann-Lebesgue theorem has been employed [see Wiener 
(1933), p. 4] to put the integrals involving W equal to zero because they 
involve the limits p -+ • oo appearing in exponentials. Thus, the two con- 
figuration space probability distributions, pc(q, t), satisfy the equations of  
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continuity (9.7). From (9.6) it can be seen how the conventional quantum 
velocity field, v(q, t) is related to these subfields 

+co +co 

-c~ -co 

+co +m 

= f f P ( g l , + ( P ' q ' A q ' t ) - - g l , - ( P ' q ' A q ' t ) ) d p d ( A q )  
- - ~  --co 

= v+p+ - v_p_ (9.8) 

Thus the usual current, vp, appears as an average with the negative field 
velocity, v_, having the negative weighting (-p_). 

10. Concluding Discussion 

It has been shown that the quantum process can be described in the 
following terms: basically there is an assembly of subsystems moving 
according to the hyperclassical dynamics described by equations (2.1), (2.2) 
and (2.3). Each one of these subsystems is composed of two separate phase 
space fluids. Suitably interpreted, each of these fluid densities can be 
regarded as being a real, everywhere positive, probability distribution. An 
integration over subsystems for the positive fluid densities, g~.+(p,q, Aq, t) 
gives a real, positive everywhere, probability distribution for the whole 
assembly. A further integration over all possible momenta, then, gives the 
positive fluid configuration probability density. Similar remarks also 
apply to the negative fluid densities, gl,-. 

The combination, F = G+ - G_, which is not positive everywhere can be 
formed and has great mathematical utility in being easy to handle as a path 
weighting function. It will be briefly indicated now how such a path weight- 
ing can be defined and to what purpose it can be put. It is possible to define 
the measure,/2ab(x ", 0) (or 'probability') to be associated with those paths 
(x(t)} which start at x(0)= x at time zero and terminate at x ( T ) =  x at 
time T = nT and are only restricted by the conditions 

a~ <~ x(ir) < b~, (i = 1, 2 . . . . .  n - 1) (10.1) 

by means of the (n - 1)-fold integral 

b l  bn-1  

I 
a l  a n - I  

if(x" T[x  "-l, T - -  T)ff'(x "-1 , T - -  "fix "-2, T-- 2~-) 

---/~(x 1 , z[x ~ O) d x ' - l . . ,  dx 1 (10.2) 
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In this expression, the functions 

P ( xP, p-d x p- ~ , (p - 1) r) p( x p-l, (p - 1) ~-) (10 3) 

(p = 1,2 . . . . .  n) 

have been employed. Thus P corresponds to what in stochastic theory would 
be called the transition probability. However, P will have negative regions 
in consequence of F having such regions, but in spite of this (10.3) can be 
used unambiguously as a measure on the space of quantum paths. It can in 
fact be used to form an integral for functionals, and it can be shown (Gilson, 
196%) that it supplies an alternative language with which to describe the 
quantum process. However, the descriptive power of this alternative 
language would be much increased if the weighting were positive definite. 
Averages over the quantum path function space would then be open to 
more direct physical interpretation. It will now be shown how the 
reducibility of p can help with the solution to this problem. 

From the preceding work it can be seen that we could divide the quantum 
paths into two classes, a positive class having the density p+, and a negative 
class having the density p_. Thus, from the point of view of stochastic theory, 
it is possible to decompose the Smoluchowski equation (Gilson, 1968a), 

§ 

p(x, t + ~) = f P(x, t + ~lx', t)o(x' ,  t )dx'  
- -00  

(10.4) 

into the form 

+oo 

p+ - p_ = f P§ t + ~lx', t)p+(x', t )dx '  
- 0 0  

+ 0 0  

- f P _ ( x , t +  ~]x ' , t )p_ (x ' , t )dx '  
- o o  

(lO.5) 

where 

+co 

f lx_x,,  ) P + ( x , t + s l x ' , t ) p + ( x ' , t ) =  g~,+~ ~ , x ,  q, t  d(Aq) (10.6) 
- o o  

and 

+co 

, (x t+ ,x (x f x Od( q  (mo7  
- c o  
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The separate conservation of p+ and p_ [equation (9.7)] implies that p is 
reducible and therefore suggests the decomposition of (10.5) into the two 
equations 

p+(x, t + ~) = f -P+(x, t + z]x', t)p+(x', t)dx' (10.8) 
~ o o  

and 
+co 

~ X  r ~ t t p_(x,t+~)= f P_(x , t+  1 , t)p_(x, )dx (10.9) 

where both P+ and P are positive everywhere functions. It should be 
remarked here that in doing this step it may actually be necessary to assume 
that the two subsystems composed respectively of the positive and negative 
fluids are quasi-closed (Landau, 1959) in the usual statistical mechanics 
sense. Thus it may only be possible to do the decomposition (10.8) and 
(10.9) over not too great time intervals. 

However, when the decomposition is allowable, the kernels in the integral 
equations (10.8) and (10.9) could be used to construct a strictly measure 
theoretical weighting for quantum paths. There will then, of course, be two 
weightings but these clearly can be regarded as probability measures 
associated with the two fluids. 

On the other hand, since the mathematical technicalities are so greatly 
simplified by using the combination f i=  p-l(p+p+ _p_p_) as the path 
weighting, as in equations (10.2) and (10.3), it would, sooner or later, 
probably be necessary to make this linear combination in order to be able 
to do the mathematics. In conclusion, the physical significance of this work 
will now be briefly discussed. 

It is very tempting to regard the two fluids as being primitive electron- 
positron material. It could be argued that quantum mechanics has had its 
most clear justification in applications to atomic systems where electrons 
and positrons (bound to nuclear matter) are involved. At the conventional 
quantum mechanics level these two fluids are usually clearly differentiated 
into electrons and positrons. Thus it is not very surprising that, at a deeper 
level of analysis, we find a two-fluid scheme will generate a suitable basis 
for quantum mechanics. Thus it seems that the Wigner function, F(p,q, t), 
could be more appropriately regarded as representing a density of charge 
(negative in some regions) spread over phase space, rather than being 
regarded as a pseudo probability. Further, at the configuration space level, 
equation (9.8) would have the clear significance that (-p_) would represent 
a negative charge density moving with velocity v_, and p+ would represent 
a positive charge density moving with velocity v+. Thus the total (conven- 
tional probability current) charge current, v(q, t)p(q, t), would be the super- 
position of the positive and negative currents. Alternatively, F(p,q) could 
represent the density of other possible physical parameters (non-electric 
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charges) which can assume negative values in phase space. The identification 
of F(p,q ,  t) as a mass distribution is a particularly interesting possibility. 
In this case there is a direct correlation between the negative regions of 
F ( p , q , t )  and the negative energy solutions of the classical relativistic 
equation connecting energy and momentum. A number of deductions 
about the underlying structure of quantum mechanics can be made on the 
basis of this correlation. In fact, the present author has shown (Gilson, 
1969b, c) that the quantum process is equivalent to two statistical fluids in 
thermal equilibrium. The two-fluid structure also supplies a solution to the 
problem of explaining the rather odd form assumed by the formula (Gilson, 
1968c) expressing the self-interaction of quantum paths. Thus it seems that a 
subquantum phase space version of quantum theory could lead to some 
rethinking on a number of basic physical, philosophical problems. 
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